二叉树

二叉树简介

在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

二叉查找树的子节点与父节点的键一般满足一定的顺序关系,习惯上,左节点的键少于父亲节点的键,右节点的键大于父亲节点的键。

二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆。最大堆:父结点的键总是大于或等于任何一个子节点的键;最小堆:父结点的键总是小于或等于任何一个子节点的键。

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2^{i-1}个结点;深度为k的二叉树至多有2^k-1个结点;对任何一棵二叉树T,如果其终端结点数为n_0,度为2的结点数为n_2,则n_0=n_2+1。

一棵深度为k,且有2^k-1个节点称之为满二叉树;深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应时,称之为完全二叉树。

二叉树与树的区别

二叉树不是树的一种特殊情形,尽管其与树有许多相似之处,但树和二叉树有两个主要差别:

  1. 树中结点的最大度数没有限制,而二叉树结点的最大度数为2。

  2. 树的结点无左、右之分,而二叉树的结点有左、右之分。

定义二叉树的结构

二叉树的每个节点由键key、值value与左右子树left/right组成,这里我们把节点声明为一个泛型结构。

type TreeNode<K,V> = Option<Box<Node<K,V>>>;
#[derive(Debug)]
struct Node<K,V: std::fmt::Display> {
   left: TreeNode<K,V>,
   right: TreeNode<K,V>,
   key: K,
   value: V,
}

实现二叉树的初始化与二叉查找树的插入

由于二叉查找树要求键可排序,我们要求K实现PartialOrd

二叉树的遍历

  • 先序遍历:首先访问根,再先序遍历左(右)子树,最后先序遍历右(左)子树。

  • 中序遍历:首先中序遍历左(右)子树,再访问根,最后中序遍历右(左)子树。

  • 后序遍历:首先后序遍历左(右)子树,再后序遍历右(左)子树,最后访问根。

下面是代码实现:

测试代码

练习

基于以上代码,修改成二叉堆的形式。

Last updated

Was this helpful?