Go语言圣经
  • 前言
  • Go语言起源
  • Go语言项目
  • 本书的组织
  • 更多的信息
  • 致谢
  • 入门
    • Hello, World
    • 命令行参数
    • 查找重复的行
    • GIF动画
    • 获取URL
    • 并发获取多个URL
    • Web服务
    • 本章要点
  • 程序结构
    • 命名
    • 声明
    • 变量
    • 赋值
    • 类型
    • 包和文件
    • 作用域
  • 基础数据类型
    • 整型
    • 浮点数
    • 复数
    • 布尔型
    • 字符串
    • 常量
  • 复合数据类型
    • 数组
    • Slice
    • Map
    • 结构体
    • JSON
    • 文本和HTML模板
  • 函数
    • 函数声明
    • 递归
    • 多返回值
    • 错误
    • 函数值
    • 匿名函数
    • 可变参数
    • Deferred函数
    • Panic异常
    • Recover捕获异常
  • 方法
    • 方法声明
    • 基于指针对象的方法
    • 通过嵌入结构体来扩展类型
    • 方法值和方法表达式
    • 示例: Bit数组
    • 封装
  • 接口
    • 接口是合约
    • 接口类型
    • 实现接口的条件
    • flag.Value接口
    • 接口值
    • sort.Interface接口
    • http.Handler接口
    • error接口
    • 示例: 表达式求值
    • 类型断言
    • 基于类型断言识别错误类型
    • 通过类型断言查询接口
    • 类型分支
    • 示例: 基于标记的XML解码
    • 补充几点
  • Goroutines和Channels
    • Goroutines
    • 示例: 并发的Clock服务
    • 示例: 并发的Echo服务
    • Channels
    • 并发的循环
    • 示例: 并发的Web爬虫
    • 基于select的多路复用
    • 示例: 并发的字典遍历
    • 并发的退出
    • 示例: 聊天服务
  • 基于共享变量的并发
    • 竞争条件
    • sync.Mutex互斥锁
    • sync.RWMutex读写锁
    • 内存同步
    • sync.Once初始化
    • 竞争条件检测
    • 示例: 并发的非阻塞缓存
    • Goroutines和线程
  • 包和工具
    • 包简介
    • 导入路径
    • 包声明
    • 导入声明
    • 包的匿名导入
    • 包和命名
    • 工具
  • 测试
    • go test
    • 测试函数
    • 测试覆盖率
    • 基准测试
    • 剖析
    • 示例函数
  • 反射
    • 为何需要反射?
    • reflect.Type和reflect.Value
    • Display递归打印
    • 示例: 编码S表达式
    • 通过reflect.Value修改值
    • 示例: 解码S表达式
    • 获取结构体字段标识
    • 显示一个类型的方法集
    • 几点忠告
  • 底层编程
    • unsafe.Sizeof, Alignof 和 Offsetof
    • unsafe.Pointer
    • 示例: 深度相等判断
    • 通过cgo调用C代码
    • 几点忠告
  • 附录
    • 附录A:原文勘误
    • 附录B:作者译者
    • 附录C:译文授权
    • 附录D:其它语言
Powered by GitBook
On this page

Was this helpful?

  1. 基于共享变量的并发

sync.Mutex互斥锁

在8.6节中,我们使用了一个buffered channel作为一个计数信号量,来保证最多只有20个goroutine会同时执行HTTP请求。同理,我们可以用一个容量只有1的channel来保证最多只有一个goroutine在同一时刻访问一个共享变量。一个只能为1和0的信号量叫做二元信号量(binary semaphore)。

gopl.io/ch9/bank2

var (
    sema    = make(chan struct{}, 1) // a binary semaphore guarding balance
    balance int
)

func Deposit(amount int) {
    sema <- struct{}{} // acquire token
    balance = balance + amount
    <-sema // release token
}

func Balance() int {
    sema <- struct{}{} // acquire token
    b := balance
    <-sema // release token
    return b
}

这种互斥很实用,而且被sync包里的Mutex类型直接支持。它的Lock方法能够获取到token(这里叫锁),并且Unlock方法会释放这个token:

gopl.io/ch9/bank3

import "sync"

var (
    mu      sync.Mutex // guards balance
    balance int
)

func Deposit(amount int) {
    mu.Lock()
    balance = balance + amount
    mu.Unlock()
}

func Balance() int {
    mu.Lock()
    b := balance
    mu.Unlock()
    return b
}

每次一个goroutine访问bank变量时(这里只有balance余额变量),它都会调用mutex的Lock方法来获取一个互斥锁。如果其它的goroutine已经获得了这个锁的话,这个操作会被阻塞直到其它goroutine调用了Unlock使该锁变回可用状态。mutex会保护共享变量。惯例来说,被mutex所保护的变量是在mutex变量声明之后立刻声明的。如果你的做法和惯例不符,确保在文档里对你的做法进行说明。

在Lock和Unlock之间的代码段中的内容goroutine可以随便读取或者修改,这个代码段叫做临界区。goroutine在结束后释放锁是必要的,无论以哪条路径通过函数都需要释放,即使是在错误路径中,也要记得释放。

上面的bank程序例证了一种通用的并发模式。一系列的导出函数封装了一个或多个变量,那么访问这些变量唯一的方式就是通过这些函数来做(或者方法,对于一个对象的变量来说)。每一个函数在一开始就获取互斥锁并在最后释放锁,从而保证共享变量不会被并发访问。这种函数、互斥锁和变量的编排叫作监控monitor(这种老式单词的monitor是受"monitor goroutine"的术语启发而来的。两种用法都是一个代理人保证变量被顺序访问)。

由于在存款和查询余额函数中的临界区代码这么短--只有一行,没有分支调用--在代码最后去调用Unlock就显得更为直截了当。在更复杂的临界区的应用中,尤其是必须要尽早处理错误并返回的情况下,就很难去(靠人)判断对Lock和Unlock的调用是在所有路径中都能够严格配对的了。Go语言里的defer简直就是这种情况下的救星:我们用defer来调用Unlock,临界区会隐式地延伸到函数作用域的最后,这样我们就从“总要记得在函数返回之后或者发生错误返回时要记得调用一次Unlock”这种状态中获得了解放。Go会自动帮我们完成这些事情。

func Balance() int {
    mu.Lock()
    defer mu.Unlock()
    return balance
}

上面的例子里Unlock会在return语句读取完balance的值之后执行,所以Balance函数是并发安全的。这带来的另一点好处是,我们再也不需要一个本地变量b了。

此外,一个deferred Unlock即使在临界区发生panic时依然会执行,这对于用recover (§5.10)来恢复的程序来说是很重要的。defer调用只会比显式地调用Unlock成本高那么一点点,不过却在很大程度上保证了代码的整洁性。大多数情况下对于并发程序来说,代码的整洁性比过度的优化更重要。如果可能的话尽量使用defer来将临界区扩展到函数的结束。

考虑一下下面的Withdraw函数。成功的时候,它会正确地减掉余额并返回true。但如果银行记录资金对交易来说不足,那么取款就会恢复余额,并返回false。

// NOTE: not atomic!
func Withdraw(amount int) bool {
    Deposit(-amount)
    if Balance() < 0 {
        Deposit(amount)
        return false // insufficient funds
    }
    return true
}

函数终于给出了正确的结果,但是还有一点讨厌的副作用。当过多的取款操作同时执行时,balance可能会瞬时被减到0以下。这可能会引起一个并发的取款被不合逻辑地拒绝。所以如果Bob尝试买一辆sports car时,Alice可能就没办法为她的早咖啡付款了。这里的问题是取款不是一个原子操作:它包含了三个步骤,每一步都需要去获取并释放互斥锁,但任何一次锁都不会锁上整个取款流程。

理想情况下,取款应该只在整个操作中获得一次互斥锁。下面这样的尝试是错误的:

// NOTE: incorrect!
func Withdraw(amount int) bool {
    mu.Lock()
    defer mu.Unlock()
    Deposit(-amount)
    if Balance() < 0 {
        Deposit(amount)
        return false // insufficient funds
    }
    return true
}

上面这个例子中,Deposit会调用mu.Lock()第二次去获取互斥锁,但因为mutex已经锁上了,而无法被重入(译注:go里没有重入锁,关于重入锁的概念,请参考java)--也就是说没法对一个已经锁上的mutex来再次上锁--这会导致程序死锁,没法继续执行下去,Withdraw会永远阻塞下去。

关于Go的互斥量不能重入这一点我们有很充分的理由。互斥量的目的是为了确保共享变量在程序执行时的关键点上能够保证不变性。不变性的其中之一是“没有goroutine访问共享变量”。但实际上对于mutex保护的变量来说,不变性还包括其它方面。当一个goroutine获得了一个互斥锁时,它会断定这种不变性能够被保持。其获取并保持锁期间,可能会去更新共享变量,这样不变性只是短暂地被破坏。然而当其释放锁之后,它必须保证不变性已经恢复原样。尽管一个可以重入的mutex也可以保证没有其它的goroutine在访问共享变量,但这种方式没法保证这些变量额外的不变性。(译注:这段翻译有点晕)

一个通用的解决方案是将一个函数分离为多个函数,比如我们把Deposit分离成两个:一个不导出的函数deposit,这个函数假设锁总是会被保持并去做实际的操作,另一个是导出的函数Deposit,这个函数会调用deposit,但在调用前会先去获取锁。同理我们可以将Withdraw也表示成这种形式:

func Withdraw(amount int) bool {
    mu.Lock()
    defer mu.Unlock()
    deposit(-amount)
    if balance < 0 {
        deposit(amount)
        return false // insufficient funds
    }
    return true
}

func Deposit(amount int) {
    mu.Lock()
    defer mu.Unlock()
    deposit(amount)
}

func Balance() int {
    mu.Lock()
    defer mu.Unlock()
    return balance
}

// This function requires that the lock be held.
func deposit(amount int) { balance += amount }

当然,这里的存款deposit函数很小实际上取款withdraw函数不需要理会对它的调用,尽管如此,这里的表达还是表明了规则。

封装(§6.6), 用限制一个程序中的意外交互的方式,可以使我们获得数据结构的不变性。因为某种原因,封装还帮我们获得了并发的不变性。当你使用mutex时,确保mutex和其保护的变量没有被导出(在go里也就是小写,且不要被大写字母开头的函数访问啦),无论这些变量是包级的变量还是一个struct的字段。

Previous竞争条件Nextsync.RWMutex读写锁

Last updated 4 years ago

Was this helpful?