Display递归打印

接下来,让我们看看如何改善聚合数据类型的显示。我们并不想完全克隆一个fmt.Sprint函数,我们只是像构建一个用于调式用的Display函数,给定一个聚合类型x,打印这个值对应的完整的结构,同时记录每个发现的每个元素的路径。让我们从一个例子开始。

e, _ := eval.Parse("sqrt(A / pi)")
Display("e", e)

在上面的调用中,传入Display函数的参数是在7.9节一个表达式求值函数返回的语法树。Display函数的输出如下:

Display e (eval.call):
e.fn = "sqrt"
e.args[0].type = eval.binary
e.args[0].value.op = 47
e.args[0].value.x.type = eval.Var
e.args[0].value.x.value = "A"
e.args[0].value.y.type = eval.Var
e.args[0].value.y.value = "pi"

在可能的情况下,你应该避免在一个包中暴露和反射相关的接口。我们将定义一个未导出的display函数用于递归处理工作,导出的是Display函数,它只是display函数简单的包装以接受interface{}类型的参数:

gopl.io/ch12/display

func Display(name string, x interface{}) {
    fmt.Printf("Display %s (%T):\n", name, x)
    display(name, reflect.ValueOf(x))
}

在display函数中,我们使用了前面定义的打印基础类型——基本类型、函数和chan等——元素值的formatAtom函数,但是我们会使用reflect.Value的方法来递归显示聚合类型的每一个成员或元素。在递归下降过程中,path字符串,从最开始传入的起始值(这里是“e”),将逐步增长以表示如何达到当前值(例如“e.args[0].value”)。

因为我们不再模拟fmt.Sprint函数,我们将直接使用fmt包来简化我们的例子实现。

让我们针对不同类型分别讨论。

Slice和数组: 两种的处理逻辑是一样的。Len方法返回slice或数组值中的元素个数,Index(i)活动索引i对应的元素,返回的也是一个reflect.Value类型的值;如果索引i超出范围的话将导致panic异常,这些行为和数组或slice类型内建的len(a)和a[i]等操作类似。display针对序列中的每个元素递归调用自身处理,我们通过在递归处理时向path附加“[i]”来表示访问路径。

虽然reflect.Value类型带有很多方法,但是只有少数的方法对任意值都是可以安全调用的。例如,Index方法只能对Slice、数组或字符串类型的值调用,其它类型如果调用将导致panic异常。

结构体: NumField方法报告结构体中成员的数量,Field(i)以reflect.Value类型返回第i个成员的值。成员列表包含了匿名成员在内的全部成员。通过在path添加“.f”来表示成员路径,我们必须获得结构体对应的reflect.Type类型信息,包含结构体类型和第i个成员的名字。

Maps: MapKeys方法返回一个reflect.Value类型的slice,每一个都对应map的可以。和往常一样,遍历map时顺序是随机的。MapIndex(key)返回map中key对应的value。我们向path添加“[key]”来表示访问路径。(我们这里有一个未完成的工作。其实map的key的类型并不局限于formatAtom能完美处理的类型;数组、结构体和接口都可以作为map的key。针对这种类型,完善key的显示信息是练习12.1的任务。)

指针: Elem方法返回指针指向的变量,还是reflect.Value类型。技术指针是nil,这个操作也是安全的,在这种情况下指针是Invalid无效类型,但是我们可以用IsNil方法来显式地测试一个空指针,这样我们可以打印更合适的信息。我们在path前面添加“*”,并用括弧包含以避免歧义。

接口: 再一次,我们使用IsNil方法来测试接口是否是nil,如果不是,我们可以调用v.Elem()来获取接口对应的动态值,并且打印对应的类型和值。

现在我们的Display函数总算完工了,让我们看看它的表现吧。下面的Movie类型是在4.5节的电影类型上演变来的:

让我们声明一个该类型的变量,然后看看Display函数如何显示它:

Display("strangelove", strangelove)调用将显示(strangelove电影对应的中文名是《奇爱博士》):

我们也可以使用Display函数来显示标准库中类型的内部结构,例如*os.File类型:

要注意的是,结构体中未导出的成员对反射也是可见的。需要当心的是这个例子的输出在不同操作系统上可能是不同的,并且随着标准库的发展也可能导致结果不同。(这也是将这些成员定义为私有成员的原因之一!)我们深圳可以用Display函数来显示reflect.Value,来查看*os.File类型的内部表示方式。Display("rV", reflect.ValueOf(os.Stderr))调用的输出如下,当然不同环境得到的结果可能有差异:

观察下面两个例子的区别:

在第一个例子中,Display函数将调用reflect.ValueOf(i),它返回一个Int类型的值。正如我们在12.2节中提到的,reflect.ValueOf总是返回一个值的具体类型,因为它是从一个接口值提取的内容。

在第二个例子中,Display函数调用的是reflect.ValueOf(&i),它返回一个指向i的指针,对应Ptr类型。在switch的Ptr分支中,通过调用Elem来返回这个值,返回一个Value来表示i,对应Interface类型。一个间接获得的Value,就像这一个,可能代表任意类型的值,包括接口类型。内部的display函数递归调用自身,这次它将打印接口的动态类型和值。

目前的实现,Display如果显示一个带环的数据结构将会陷入死循环,例如首位项链的链表:

Display会永远不停地进行深度递归打印:

许多Go语言程序都包含了一些循环的数据结果。Display支持这类带环的数据结构是比较棘手的,需要增加一个额外的记录访问的路径;代价是昂贵的。一般的解决方案是采用不安全的语言特性,我们将在13.3节看到具体的解决方案。

带环的数据结构很少会对fmt.Sprint函数造成问题,因为它很少尝试打印完整的数据结构。例如,当它遇到一个指针的时候,它只是简单第打印指针的数值。虽然,在打印包含自身的slice或map时可能遇到困难,但是不保证处理这种是罕见情况却可以避免额外的麻烦。

练习 12.1: 扩展Displayhans,以便它可以显示包含以结构体或数组作为map的key类型的值。

练习 12.2: 增强display函数的稳健性,通过记录边界的步数来确保在超出一定限制前放弃递归。(在13.3节,我们会看到另一种探测数据结构是否存在环的技术。)

Last updated

Was this helpful?